Spontaneous Action Potentials and Neural Coding in Unmyelinated Axons
نویسندگان
چکیده
The voltage-gated Na and K channels in neurons are responsible for action potential generation. Because ion channels open and close in a stochastic fashion, spontaneous (ectopic) action potentials can result even in the absence of stimulation. While spontaneous action potentials have been studied in detail in single-compartment models, studies on spatially extended processes have been limited. The simulations and analysis presented here show that spontaneous rate in unmyelinated axon depends nonmonotonically on the length of the axon, that the spontaneous activity has sub-Poisson statistics, and that neural coding can be hampered by the spontaneous spikes by reducing the probability of transmitting the first spike in a train.
منابع مشابه
Axotomy increases the excitability of dorsal root ganglion cells with unmyelinated axons.
Axotomy increases the excitability of dorsal root ganglion cells with unmyelinated axons. J. Neurophysiol. 78: 2790-2794, 1997. To better understand the neuronal mechanism of neuropathic pain, the effect of axotomy on the excitability of dorsal root ganglion (DRG) cells with unmyelinated axons (C cells) was investigated. Whole cell patch-clamp recordings were performed on intact DRG cells with ...
متن کاملTypical gray matter axons in mammalian brain fail to conduct action potentials faithfully at fever‐like temperatures
We studied the ability of typical unmyelinated cortical axons to conduct action potentials at fever-like temperatures because fever often gives CNS symptoms. We investigated such axons in cerebellar and hippocampal slices from 10 to 25 days old rats at temperatures between 30 and 43°C. By recording with two electrodes along axonal pathways, we confirmed that the axons were able to initiate acti...
متن کاملActivity-dependent modulation of axonal excitability in unmyelinated peripheral rat nerve fibers by the 5-HT(3) serotonin receptor.
Activity-dependent fluctuations in axonal excitability and changes in interspike intervals modify the conduction of trains of action potentials in unmyelinated peripheral nerve fibers. During inflammation of a nerve trunk, long stretches of axons are exposed to inflammatory mediators such as 5-hydroxytryptamine [5-HT]. In the present study, we have tested the effects of m-chlorophenylbiguanide ...
متن کاملIon-Channel Noise Places Limits on the Miniaturization of the Brain’s Wiring
The action potential (AP) is transmitted by the concerted action of voltage-gated ion channels. Thermodynamic fluctuations in channel proteins produce probabilistic gating behavior, causing channel noise. Miniaturizing signaling systems increases susceptibility to noise, and with many cortical, cerebellar, and peripheral axons <0.5 mum diameter [1, 2 and 3], channel noise could be significant [...
متن کاملAction Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor
The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2015